Solvability of a Second Order Nonlinear Neutral Delay Difference Equation

نویسندگان

  • Zeqing Liu
  • Liangshi Zhao
  • Jeong Sheok Ume
  • Shin Min Kang
  • Sergey V. Zelik
چکیده

and Applied Analysis 3 Let l∞ β denote the Banach space of all bounded sequences in Zβ with norm ‖x‖ sup n∈Zβ |xn| for x {xn}n∈Zβ ∈ l∞ β , B d,D { x {xn}n∈Zβ ∈ l∞ β : ‖x − d‖ ≤ D } for d {d}n∈Zβ ∈ l∞ β , D > 0 2.2 represent the closed ball centered at d and with radius D in l∞ β . By a solution of 1.1 , we mean a sequence {xn}n∈Zβ with a positive integer T ≥ n0 τ |β| such that 1.1 is satisfied for all n ≥ T . As is customary, a solution of 1.1 is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory. Lemma 2.1 2 . A bounded, uniformly Cauchy subset Y of l∞ β is relatively compact. Lemma 2.2 Krasnoselskii fixed point theorem 10 . Let Y be a nonempty bounded closed convex subset of a Banach space X and S,G : Y → X mappings such that Sx Gy ∈ Y for every pair x, y ∈ Y . If S is a contraction and G is completely continuous, then

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

On the Oscillation of Second-Order Nonlinear Neutral Delay Dynamic Equations on Time Scales

Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend and improve some known theorems, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation ...

متن کامل

Existence of Non-oscillatory Solutions for a Higher-order Nonlinear Neutral Difference Equation

This article concerns the solvability of the higher-order nonlinear neutral delay difference equation ∆ “ akn . . .∆ ` a2n∆(a1n∆(xn + bnxn−d)) ́” + s X j=1 pjnfj(xn−rjn ) = qn, where n ≥ n0 ≥ 0, d, k, j, s are positive integers, fj : R → R and xfj(x) ≥ 0 for x 6= 0. Sufficient conditions for the existence of non-oscillatory solutions are established by using Krasnoselskii fixed point theorem. Fi...

متن کامل

Solvability of a Higher-Order Nonlinear Neutral Delay Difference Equation

The existence of bounded nonoscillatory solutions of a higher-order nonlinear neutral delay difference equationΔ akn · · ·Δ a2nΔ a1nΔ xn bnxn−d f n, xn−r1n , xn−r2n , . . . , xn−rsn 0, n ≥ n0, where n0 ≥ 0, d > 0, k > 0, and s > 0 are integers, {ain}n≥n0 i 1, 2, . . . , k and {bn}n≥n0 are real sequences, ⋃s j 1{rjn}n≥n0 ⊆ Z, and f : {n : n ≥ n0} × R → R is a mapping, is studied. Some sufficient...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014